Link Search Menu Expand Document

Datasets


Here is a list of datasets on which to test COLIBRI VR. It notably includes the datasets that were used to illustrate the publications in which we introduce the toolkit.

Authors URL Name Count Resolution Tags
X Y
[Chaurasia et al. 2013] link Museum1 27 2256 1504 place-outdoors
[Chaurasia et al. 2013] link Museum2 30 2256 1504 place-outdoors
[Chaurasia et al. 2013] link Hugo1 24 3216 2136 place-outdoors
[Chaurasia et al. 2013] link University 28 1728 1152 place-outdoors
[Chaurasia et al. 2011] link Aquarium-20 19 2592 1944 place-outdoors, window-reflections
[Chaurasia et al. 2011] link Yellowhouse-12 12 3456 2304 place-outdoors
[Chaurasia et al. 2011] link Tree-18 18 2592 1728 place-outdoors
[Chaurasia et al. 2011] link Street-10 13 2592 1728 place-outdoors
[Fuhrmann et al. 2014] link Kermit 11 640 480 object
[Fuhrmann et al. 2014] link Achteck-Turm 36 1296 864 place-outdoors
[Fuhrmann et al. 2014] link Der Hass 79 2592 1728 place-outdoors
[Fuhrmann et al. 2014] link Citywall 564 2000 1500 place-outdoors
[Fuhrmann et al. 2014] link Reader 539 1296 864 object
[Schönberger et al. 2016] link Gerrard Hall 100 5616 3744 place-outdoors
[Schönberger et al. 2016] link Graham Hall (exterior) 562 5616 3744 place-outdoors
[Schönberger et al. 2016] link Graham Hall (interior) 711 5616 3744 place-indoors
[Schönberger et al. 2016] link Person Hall 330 5616 3744 place-outdoors
[Schönberger et al. 2016] link South Building 128 3072 2304 place-outdoors
[Schöps et al. 2017] link courtyard 38 6205 4135 place-outdoors
[Schöps et al. 2017] link electro 45 6192 4121 place-outdoors
[Schöps et al. 2017] link facade 76 6204 4132 place-outdoors
[Schöps et al. 2017] link meadow 15 6201 4135 place-outdoors
[Schöps et al. 2017] link playground 38 6215 4146 place-outdoors
[Schöps et al. 2017] link terrace 23 6204 4135 place-outdoors
[Schöps et al. 2017] link boulders 26 6208 4135 place-outdoors
[Schöps et al. 2017] link observatory 27 6198 4130 place-outdoors
[Schöps et al. 2017] link terrace-2 13 6202 4134 place-outdoors
[Strecha et al. 2008] link fountain-P11 11 3072 2048 place-outdoors
[Strecha et al. 2008] link Herz-Jesu-P8 8 3072 2048 place-outdoors
[Strecha et al. 2008] link entry-P10 10 3072 2048 place-outdoors
[Strecha et al. 2008] link castle-P19 19 3072 2048 place-outdoors
[Strecha et al. 2008] link Herz-Jesu-P25 25 3072 2048 place-outdoors
[Strecha et al. 2008] link castle-P30 30 3072 2048 place-outdoors
[Hedman et al. 2016] link Book Shop 271 4192 3264 place-indoors
[Hedman et al. 2016] link Creepy Attic 225 4192 3264 place-indoors
[Hedman et al. 2016] link Dorm Room 227 4192 3264 place-indoors
[Hedman et al. 2016] link Museum 298 4192 3264 place-indoors
[Hedman et al. 2016] link Play Room 231 4192 3264 place-indoors
[Hedman et al. 2016] link Reading Corner 167 4192 3264 place-indoors
[Schöps et al. 2017] link delivery area 44 6208 4135 place-indoors
[Schöps et al. 2017] link kicker 31 6211 4137 place-indoors
[Schöps et al. 2017] link office 26 6221 4146 place-indoors
[Schöps et al. 2017] link pipes 14 6220 4141 place-indoors
[Schöps et al. 2017] link relief 31 6212 4141 place-indoors
[Schöps et al. 2017] link relief-2 31 6212 4139 place-indoors
[Schöps et al. 2017] link terrains 42 6223 4148 place-indoors, specular-highlights
[Schöps et al. 2017] link botanical garden 30 6214 4138 place-indoors
[Schöps et al. 2017] link bridge 110 6208 4137 place-indoors
[Schöps et al. 2017] link door 7 6212 4140 place-indoors
[Schöps et al. 2017] link exhibition hall 68 6208 4135 place-indoors
[Schöps et al. 2017] link lecture room 23 6211 4139 place-indoors
[Schöps et al. 2017] link living room 65 6223 4146 place-indoors
[Schöps et al. 2017] link lounge 10 6213 4139 place-indoors
[Schöps et al. 2017] link old computer 54 6205 4133 place-indoors
[Schöps et al. 2017] link statue 11 6208 4138 place-indoors
Stanford Light Field Archive link Chess 289 1400 800 object, light-field (17x17)
Stanford Light Field Archive link Lego Bulldozer 289 1536 1152 object, light-field (17x17)
Stanford Light Field Archive link Lego Truck 289 1280 960 object, light-field (17x17)
Stanford Light Field Archive link Eucalyptus Flowers 289 1280 1536 object, light-field (17x17)
Stanford Light Field Archive link Amethyst 289 768 1024 object, light-field (17x17), specular-highlights
Stanford Light Field Archive link Bracelet 289 1024 640 object, light-field (17x17)
Stanford Light Field Archive link The Stanford Bunny 289 1024 1024 object, light-field (17x17)
Stanford Light Field Archive link Jelly Beans 289 1024 512 object, light-field (17x17)
Stanford Light Field Archive link Lego Knights 289 1024 1024 object, light-field (17x17)
Stanford Light Field Archive link Tarot Cards and Crystal Ball 289 1024 1024 object, light-field (17x17)
Stanford Light Field Archive link Treasure Chest 289 1536 1280 object, light-field (17x17)
Stanford Light Field Archive link Lego Gantry Selft Portrait 289 640 1024 object, light-field (17x17)
Stanford Light Field Archive link Fluorescent Crayon Wax 400 170 114 object, light-field (20x20)
Stanford Light Field Archive link Golgi Stained Neurons at 20x 256 289 289 object, light-field (16x16)
Stanford Light Field Archive link Golgi Stained Neurons at 40x 256 289 289 object, light-field (16x16)
Stanford Light Field Archive link CD cases and poster behind plants 105 650 515 object, light-field (21x5)
Stanford Light Field Archive link CD cases and poster (unoccluded) 105 650 515 object, light-field (21x5)
Stanford Light Field Archive link Toy Humvee and soldier (unoccluded) 256 650 515 object, light-field (16x16)
Stanford Light Field Archive link Toy Humvee and soldier behind dense foliage 256 650 515 object, light-field (16x16)
Stanford Light Field Archive link Objects behind dense foliage 88 640 480 object, light-field
Stanford Light Field Archive link Students behind bushes 45 640 480 object, light-field
[de Dinechin and Paljic 2018] link Garden 1 8192 4096 place-outdoors, omnidirectional, depth-map
[de Dinechin and Paljic 2018] link Bookshelves 1 8192 4096 place-indoors, omnidirectional, depth-map
[de Dinechin and Paljic 2018] link Snow 1 8192 4096 place-outdoors, omnidirectional, depth-map
[de Dinechin and Paljic 2018] link Museum 1 8192 4096 place-indoors, omnidirectional, depth-map
[Knapitsch et al. 2017] link Family 152 1920 1080 place-outdoors, specular-highlights
[Knapitsch et al. 2017] link Francis 302 1920 1080 place-outdoors
[Knapitsch et al. 2017] link Horse 151 1920 1080 place-outdoors, specular-highlights
[Knapitsch et al. 2017] link Lighthouse 309 2048 1080 place-outdoors
[Knapitsch et al. 2017] link M60 313 2048 1080 object
[Knapitsch et al. 2017] link Panther 314 2048 1080 object, specular-highlights
[Knapitsch et al. 2017] link Playground 307 1920 1080 place-outdoors, specular-highlights
[Knapitsch et al. 2017] link Train 301 1920 1080 place-outdoors
[Knapitsch et al. 2017] link Auditorium 302 1920 1080 place-indoors
[Knapitsch et al. 2017] link Ballroom 324 1920 1080 place-indoors, specular-highlights, mirror-reflections
[Knapitsch et al. 2017] link Courtroom 301 1920 1080 place-indoors, specular-highlights
[Knapitsch et al. 2017] link Museum 301 1920 1080 place-indoors, specular-highlights
[Knapitsch et al. 2017] link Palace 509 1920 1080 place-outdoors, water-reflections
[Knapitsch et al. 2017] link Temple 302 1920 1080 place-outdoors
[Knapitsch et al. 2017] link Barn 410 1920 1080 place-outdoors
[Knapitsch et al. 2017] link Caterpillar 383 1920 1080 place-outdoors
[Knapitsch et al. 2017] link Church 507 1920 1080 place-indoors, specular-highlights
[Knapitsch et al. 2017] link Courthouse 1106 1920 1080 place-outdoors, specular-highlights
[Knapitsch et al. 2017] link Ignatius 263 1920 1080 place-outdoors, water-reflections
[Knapitsch et al. 2017] link Meeting room 371 1920 1080 place-indoors
[Knapitsch et al. 2017] link Truck 251 1920 1080 place-outdoors, window-reflections


Frequently asked questions

I know of a high-quality multi-view dataset that is not yet listed here, can I add it to the list?

Of course! Feel free to send us the link, and we’ll add it to the list as soon as possible. You can find our contact information at the bottom of each page. If you prefer, you can also provide the link by raising an issue on the project’s GitHub page.



References

[Chaurasia et al. 2013] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. Depth synthesis and local warps for plausible image-based navigation. ACM Transactions on Graphics, 32(3):1–12, June 2013. doi: 10.1145/2487228.2487238

[Chaurasia et al. 2011] G. Chaurasia, O. Sorkine, and G. Drettakis. Silhouette-aware warping for image-based rendering. In Proceedings of the 22nd Eurographics Conference on Rendering, EGSR ’11, pp. 1223–1232. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2011. doi: 10.1111/j.1467-8659.2011.01981.x

[de Dinechin and Paljic 2018] G.D. de Dinechin and A. Paljic. Cinematic Virtual Reality With Motion Parallax From a Single Monoscopic Omnidirectional Image. In 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) held jointly with 2018 24th International Conference on Virtual Systems Multimedia (VSMM 2018), 2018. doi: 10.1109/DigitalHeritage.2018.8810116

[Fuhrmann et al. 2014] S. Fuhrmann, F. Langguth, M. Goesele. MVE - A Multi-View Reconstruction Environment. In Eurographics Workshop on Graphics and Cultural Heritage, 2014. doi: 10.2312/gch.20141299

[Hedman et al. 2016] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. Scalable inside-out image-based rendering. ACM Transactions on Graphics, 35(6):1–11, Nov. 2016. doi: 10.1145/2980179.2982420

[Knapitsch et al. 2017] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks and temples: benchmarking large-scale scene reconstruction. ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 78:1–78:13, Jul. 2017. doi: 10.1145/3072959.3073599

[Schönberger and Frahm 2016] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016. doi: 10.1109/cvpr.2016.445

[Schöps et al. 2017] T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler, M. Pollefeys, and A. Geiger. A multi-view stereo benchmark with high-resolution images and multi-camera videos. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2538–2547, 2017. doi: 10.1109/CVPR.2017.272

[Strecha et al. 2008] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoennessen. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, June 2008. doi: 10.1109/cvpr.2008.4587706