Bibliography

BF14

Timothy Barfoot and Paul Furgale. Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems. IEEE Transaction on Robotics, 30(3):679–693, 2014.

BB17

Axel Barrau and Silvère Bonnabel. The Invariant Extended Kalman Filter as a Stable Observer. IEEE Transactions on Automatic Control, 62(4):1797–1812, 2017.

BBB19

Martin Brossard, Axel Barrau, and Silvère Bonnabel. A Code for Unscented Kalman Filtering on Manifolds (UKF-M). 2019.

HMR13

G Huang, A Mourikis, and S Roumeliotis. A Quadratic-Complexity Observability-Constrained Unscented Kalman Filter for SLAM. IEEE Transactions on Robotics, 29(5):1226–1243, 2013.

HMR10

Guoquan P. Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. Observability-based Rules for Designing Consistent EKF SLAM Estimators. The International Journal of Robotics Research, 29(5):502–528, 2010.

KHSchon17

Manon Kok, Jeroen D. Hol, and Thomas B. Schön. Using Inertial Sensors for Position and Orientation Estimation. Foundations and Trends® in Signal Processing, 11(1-2):1–153, 2017.

KS19

Prasanth Kotaru and Koushil Sreenath. Variation Based Extended Kalman Filter on S2. In European Control Conference (ECC), 875–882. IEEE, 2019.

SE19

Alexander Meyer Sjøberg and Olav Egeland. An EKF for Lie Groups with Application to Crane Load Dynamics. Modeling, Identification and Control, 40(2):109–124, 2019.

VCSO10

J.F. Vasconcelos, R. Cunha, C. Silvestre, and P. Oliveira. A nonlinear position and attitude observer on SE(3) using landmark measurements. Systems & Control Letters, 59(3):155 – 166, 2010.